

3D Graphic

SANTASCO

Augmented Reality

Game Industry

Mobile Apps

Unlock Unity Water Asset potential as we did in our Game

Index

- Water shaders: basic parts- Water shaders: advanced parts- Common issues- Performance impact- Case study: Unity's Prefab- Conclusion

Water shaders : basics
- Ambient

Recive light from all directionsand return it in the same alldirections according to owncoefficient
ambient = kA*global_ambient

- Diffuse
Recives light from a single direction and reflects it equally in all directions
diffuse = kD x light_c * dot(N,L)

surface_color = ambient + diffuse + reflection + refraction

Water shaders : basics
- Reflection

Property to reflect the scene above the surface
The image of the reflected scene is needed to calculate the reflected color for each pixel of the water.
Extra render target texture
Clipping plane

- Refraction
Ammount of light acrossing the border of different densitymaterials
Snell Law
Extra render target texture
Clipping plane

surface_color = ambient + diffuse + reflection + refraction

Water shaders : basics
- Fresnel

Property to define reflection / refraction ratio

- Speculars
High-lighted (sun) surface areasobtained by Phong illuminationModel

surface_color = ambient + diffuse + reflection + refraction

N LNRV

Fresnel 1,5Fresnel 0,15

Water shaders : basics
- Waves

Achieved by scrolling in two different directions a bump map

DIRECTION A DIRECTION B WAVES=+

Water shaders : advanced parts
- Solid waves by vertex displacement

amplitude frequencysteepness speeddirectionAB directionCD

Water shaders : advanced parts
- Solid waves by vertex displacement
half3 GerstnerOffset4 (half2 xzVtx, half4 steepness, half4 amp, half4 freq, half4 speed, half4 dirAB, half4 dirCD){half4 AB = steepness.xxyy * amp.xxyy * dirAB.xyzw; //DIR*STEP*AMPhalf4 CD = steepness.zzww * amp.zzww * dirCD.xyzw;

half4 dotABCD = freq.xyzw * half4(dot(dirAB.xy, xzVtx), dot(dirAB.zw, xzVtx), dot(dirCD.xy, xzVtx), dot(dirCD.zw, xzVtx)); //DOT PRODUCT DIR*FREQhalf4 TIME = _Time.yyyy * speed;
half4 COS = cos (dotABCD + TIME); //TIME MAKES IT MOVEhalf4 SIN = sin (dotABCD + TIME);
offsets.x = dot(COS, half4(AB.xz, CD.xz));offsets.z = dot(COS, half4(AB.yw, CD.yw));offsets.y = dot(SIN, amp); //FINAL COORDINATES
return offsets;}

Water shaders : advanced parts
- Edge Blending

Its purpos is to avoid hard edges where water plane intersect with
anysurfaceAchieved by calculate alpha of the pixel in linear function with the distant of the surface underwater

Water shaders : advanced parts
- Foam Blending

Extra foam texture is added for a fixed distance starting from the edge
intersection alpha blended at both sides

Common Issues: plane size
SCALE : BAD IDEAResults in deforming waves shape and size
MORE PLANES : MORE VERTEXDrammatic increase of vertex count

Standard Size
Needed Size

Far Plane = 2000

Common Issues
- Wave pattern and repetition

Unrealistic wave repetition

Common Issues
- Culling or Overlay

Water is hidden or hides other object in the scene

Performance Impact
- Reflection texture

Let's remember we are rendering an EXTRA SCENE

Performance Impact
- Vertex Density

This plane has 2652 vertex and it cover ¼ of the standard little plane

Standard Size
Needed Size

Case Study: Solve pattern repetition
half3 GerstnerOffset4 (half2 xzVtx, half4 steepness, half4 amp, half4 freq, half4 speed, half4 dirAB, half4 dirCD){half3 offsets;

half4 AB = steepness.xxyy * amp.xxyy * dirAB.xyzw;half4 CD = steepness.zzww * amp.zzww * dirCD.xyzw;
half4 dotABCD = freq.xyzw * half4(dot(dirAB.xy, xzVtx), dot(dirAB.zw, xzVtx), dot(dirCD.xy, xzVtx), dot(dirCD.zw, xzVtx));half4 TIME = _Time.yyyy * speed;
half4 COS = cos (dotABCD + TIME);half4 SIN = sin (dotABCD + TIME);
offsets.x = dot(COS, half4(AB.xz, CD.xz));offsets.z = dot(COS, half4(AB.yw, CD.yw));
offsets.y = dot(SIN, amp) + rand(float3(xzVtx.x, xzVtx.y, 0))*0.2 - 0.1;
return offsets;
}

Case Study: Solve Culling or overlay
Cause:Position in the render order
Subshader{ Tags {"RenderType"="Transparent" "Queue"="Transparent-200"}

Lod 500ColorMask RGB
GrabPass { "_RefractionTex" }
Pass { ...

Case Study: Limit Reflection Texture performance impact
-Resize the texture as small as possible-Render only essential layers or change according distance-Add an extra scrolling bump map to add extra noise

Case Study: Achieve huge size & keep low vertex count
Detailed waved plane matrix 32 x 32 Simple 4 vertex planes

Case Study: Achieve huge size & keep low vertex count
The detailed plane matrix and must have the same shader with exactily the same properties except WAVE AMPLITUDE that MUST BE 0 FOR QUADS

Case Study: Achieve huge size & keep low vertex count
What about camera movements?

Case Study: Achieve huge size & keep low vertex count
dist = Vector3.Distance(ekr.transform.position,this.transform.position);xDist = ekr.transform.position.x - this.transform.position.x;yDist = ekr.transform.position.z - this.transform.position.z;

if(Mathf.Abs(dist) > maxDist)if(Mathf.Abs(xDist) > Mathf.Abs(yDist)){this.transform.position = this.transform.position + Vector3.right*minStep*Mathf.Sign(xDist);}else{this.transform.position = this.transform.position + Vector3.forward*minStep*Mathf.Sign(yDist);}

Conclusions
- Perfect for high far plane value and collisions
- Simple and Customizable
- Performance proof
- Applicable on any engine
- Unity case: 100%versions compatible no external components

Thank you

www.santasco.com

